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The linear theory used to calculate the thermal quantities inside the stack in the classical thermoacoustic
refrigerators always overestimates those measured. The causes of these discrepancies have to be found in
the complex processes of thermal exchanges. The analytical study of the transient response should pro-
vide an interpretation of these complex processes. This present paper provides such analytical modelling.
This modelling remains within the framework of the classical linear theory. It includes the effects of the
thermoacoustic heat flux carried along the stack, the conductive heat flux returning in the solid walls of
the stack and through the fluid inside the stack, the transverse heat conduction in the stack and the heat
leakages through the duct walls, the heat generated by viscous losses in the stack, the heat generated by
vorticity at the ends of the stack, and the heat transfer through both ends of the stack. A modal analytical
solution for the temperature profile is proposed, assuming the usual approximations in such thermal
problems to avoid intricate calculations and expressions. The theoretical transient response of a thermoa-
coustic refrigerator is compared with experimental data. A good qualitative agreement is obtained
between analytical and experimental results after fitting empirical coefficients.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the classical design of thermoacoustic refrigerators, a stack of
parallel plates (or any other equivalent porous material) is set in an
acoustic resonator. Thermoacoustic process occurs inside the stack
of plates when subjected to an acoustic wave. This acoustic wave
induces thermal interactions between gas and plates leading to a
hydrodynamical non-zero time-average heat transfer along the
plates. This heat flow induces a temperature gradient along the
stack. When permanent regime is reached, a stationary tempera-
ture difference DT is obtained between the ends of the stack.

The behaviour of a thermoacoustic refrigerator can be described
by using the linear steady state theory [1], assuming a balance be-
tween the thermoacoustic heat flux carried along the stack and the
conductive heat flux returning through both the solid walls of the
stack and the fluid inside the stack. This steady state assumption
gives quite reasonable results for the estimation of refrigerator
performance values such as temperature difference, heat flow ex-
tracted from the cold heat exchanger or coefficient of performance
(COP). Therefore, the quasi-steady assumption is widely used.
However, some transient phenomena, which occur during ‘‘on–off”
operations or after variations of operating conditions (thermal load
ll rights reserved.
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variations, adjustment of resonance frequency [2], etc.), may be
interesting and important. These phenomena, related to dynamic
behaviour, require today greater interest, especially when design-
ing thermoacoustic refrigerators, as for other refrigeration devices
[3,4]. Few experimental and numerical data on the transient pro-
cess in a thermoacoustic refrigerator exist in the literature [5–
10]. In particular, a simplified model has been developed to calcu-
late the transient temperature gradient in a short stack [9] and
transient effects have been addressed using narrow duct approxi-
mation, both aiming at interpreting theoretically the singularity
in the mean temperature at the closed end of the tube [10]. But
an analytical global modelling of the heat transfers during the tran-
sient regime in a thermoacoustic refrigerator is still not reported.

Besides that, transient processes have been studied in thermoa-
coustic standing wave [11–15] and travelling wave [16,17] prime
movers. Complex transient behaviours due to non-linear phenom-
ena have been enlightened, as periodic turn on and turn off
regimes [11,17] or double threshold phenomena [16]. Coupling
such a thermoacoustic prime mover with a thermoacoustic
refrigerator would probably lead to more complicated transient
behaviours. Thus, the study of transients in thermoacoustic refrig-
erators is essential for interpreting these expected complex
behaviours.

Returning to the thermoacoustic refrigerator itself, the temper-
ature difference DT calculated in the framework of the steady state
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Nomenclature

c0 adiabatic speed of sound
CmðtÞ coefficient defined in Eq. (28b)
Cp fluid specific heat at constant pressure
Cs stack material specific heat coefficient
Cv fluid specific heat coefficient at constant volume
es stack plate half thickness
f frequency
fmðtÞ coefficient defined in Eq. (30b)
gðxÞ function defined in Eq. (15)
he0 heat transfer coefficient
he‘ heat transfer coefficient
hL heat exchange coefficient ðW m�2 K�1Þ
i

ffiffiffiffiffiffiffi
�1
p

k wave number
K fluid thermal conductivity
Keq effective thermal conductivity in the stack region
km eigen value
Ks stack material thermal conductivity
‘ stack length
Lþ x0 resonator length
p acoustic pressure
P0 atmospheric pressure
qðxÞ function defined in Eq. (6)
Qc conductive heat flux
q‘ coefficient defined in Eq. (24c)
QL heat leakages through the resonator wall
Qth thermoacoustic hydrodynamical heat flux
q0 coefficient defined in Eq. (24b)
qv coefficient defined in Eq. (17)
Qv heat generated by viscous losses
Qvort heat flux due to vorticity at the ends of the stack
rðxÞ thermoacoustically induced thermal conductivity
S resonator section area
ux axial component of particle velocity
s entropy variation per unit mass
SL form factor defined in Eq. (13)
t time
Tm local time-averaged temperature

T1 ambiant temperature outside the resonator
V stack volume
vx real part of axial component of particle velocity
x longitudinal coordinate
xc distance between loudspeaker and stack centre
x0 distance between loudspeaker and stack entrance
xs stack centre coordinate
y0 fluid layer half thickness

Greek symbols
a coefficient defined in Eq. (24a)
b coefficient defined in Eq. (24a)
c Cp

Cv
dm viscous penetration depth
dh thermal penetration depth
DT temperature difference between stack ends
fL coefficient defined in Eq. (16)
g0 coefficient defined in Eq. (24b)
g‘ coefficient defined in Eq. (24c)
hðx; tÞ ¼ Tm � T1 temperature difference
l shear viscosity coefficient
n variable defined in Eq. (19)
q0 fluid density variation
q0 fluid mean density
qS stack material density
r Prandtl number
s temperature variation
uðxÞ initial temperature spatial distribution
vT isothermal compressibility
wm eigen function
x angular frequency

Subscripts
h thermal
m eigenfunction expansion
s stack
m viscous
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linear theory generally overestimates the measured one at high
drive ratio DR (ratio of the acoustic pressure amplitude p0 to the
mean pressure P0) [18–21]. Whilst the measurements of DT agree
quite well with the theory for drive ratios less than approximately
0.2% (the deviation is lower than 25%) [9], the predicted DT value
overestimates the measured one and the discrepancy increases at
increasing drive ratios (discrepancies up to 300% are reported for
drive ratios greater than 1%) [21].

The reliability of the theoretical results obtained using the lin-
ear theory suffers from intrinsic limitations which can be due to
the following causes: non-linear acoustic effects (harmonic gener-
ation, acoustic streaming), turbulent flow, vortex generation and
jetting (which occur at the stack ends), heat leakages through the
duct walls, heat generated by viscous losses in the stack, heat
transfer through the end of the stack, non-linear distortion of the
temperature oscillations inside the stack. Then works have been
carried out in order to both investigate the origin of the deviation
of the predictions from the linear theory against the measured per-
formance of real devices and also to address the requirements that
have to be taken into account in the design of thermoacoustic
refrigerators (because each effect can play an important role in
the efficiency of the devices) [6–8,20,22–28]. But heat transfer phe-
nomena appear to be more critical than non-linear acoustic or non-
linear thermal phenomena in determining the overestimation that
theoretical predictions make on experimental values of the tem-
perature gradient. The causes of these discrepancies have to be
found in the complex processes of thermal exchanges. Thus, a glo-
bal modelling of the heat transfers during the transient regime (up
to the stationary regime) should bring important information con-
cerning these discrepancies in steady state regime.

The aim of this paper is to provide a first step in the derivation
of such a global analytical modelling. This modelling remains with-
in the framework of the classical linear theory. It includes the ef-
fects of the thermoacoustic heat flux carried along the stack, the
conductive heat flux returning in the solid walls of the stack and
through the fluid inside the stack, the transverse heat conduction
in the stack and the heat leakages through the duct walls, the heat
generated by viscous losses in the stack, the heat generated by vor-
ticity at the ends of the stack, and the heat transfer through both
ends of the stack (with or without heat exchangers). These thermal
mechanisms are detailed in the first part of this paper. A modal
analytical solution for the temperature profile is then developed
in a second part, assuming the usual approximations in such ther-
mal problems to avoid intricate calculations and expressions. This
modelling explains not only the temperature difference DT be-
tween both ends of the stack, but also the temperature at any loca-
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tion inside the stack as a function of time. In a third part, the exper-
imental transient response of a thermoacoustic refrigerator is pre-
sented and compared with theoretical one.

2. The thermal mechanisms involved inside and around the
stack: the basic equations for the temperature profile

The thermoacoustic device considered in this study is schemat-
ically represented in Fig. 1. It comprises an acoustic source (an
electrodynamic loudspeaker) coupled to a closed cylindrical (sec-
tion area S, length Lþ x0) waveguide in which is set a stack of
plates. The thickness of each plate of the stack is denoted 2es, the
thickness of the fluid layer between the plates of the stack is
denoted 2y0. The axial coordinates of the ends of the stack are
denoted x ¼ 0 and x ¼ ‘, the coordinate xs of the centre of the stack
being determined by xs ¼ ‘=2. The centre of the stack is also de-
fined by its distance from the loudspeaker xc ¼ x0 þ xs. Heat
exchangers are set close to the ends of the stack. Thermoacoustic
cavity can be described in three parts. Two of them are ‘‘large”
cylindrical tubes, one extending from the loudspeaker to the en-
trance of the stack and the other one from the output of the stack
to the closed end of the resonator. These are separated by the stack
region ðx 2 ð0; ‘ÞÞ.

The behaviour of the thermoviscous fluid oscillating around the
steady state is described by a set of thermodynamical variables,
mainly the pressure variation p, the particle velocity ux in the axial
direction, the density variation q0, the entropy variation per unit
mass s and the temperature variation s, all of which are assumed
to be small so that linear approximation remains valid. The ther-
mostatic state and the nature of the fluid are then accounted for,
respectively, by thermostatic parameters and by phenomenologi-
cal quantities, respectively, such as: the ambient values P0 of the
pressure and q0 of the density, the local time-averaged tempera-
ture Tm (which depends on the coordinate x and on the time),
the adiabatic speed of sound c0, the shear viscosity coefficient l,
the diffusive thermal conductivity of the fluid K, the Prandtl num-
ber r, the heat coefficients at constant pressure and constant vol-
ume per unit of mass Cp and Cv , their ratio c ¼ Cp

Cv
and the

isothermal compressibility vT . The plates of the stack are described
by their density qs, their specific heat per unit of mass Cs and their
diffusive thermal conductivity Ks. The viscous penetration depth dv

and the thermal penetration depth dh in the fluid are given, respec-
tively, by

dv ¼
ffiffiffiffiffiffiffiffiffiffi
2l
q0x

s
ð1Þ

and

dh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K
q0Cpx

s
: ð2Þ

The angular frequency of the harmonic signal is denoted x and
the associated period is denoted T.
Fig. 1. Schematic view of a cylindrical thermoacoustic refrigerator.
The fluid considered is Stokesian (stress proportional to rate of
strain and heat flux proportional to temperature gradient), homo-
geneous and at rest. The acoustic movement is assumed to be lin-
ear. Given the specificity of the aim of this paper, the correction of
the length of the resonator due to coupling with the acoustic
source [29] is not included below. Then, assuming that the stack
does not perturb the standing wave appreciably, the acoustic pres-
sure can be written (the time factor expðixtÞ is omitted)

pðxÞ ¼ p0 cos kðxþ x0Þ; ð3Þ

where x0 denotes the position of the loudspeaker and where
k ¼ x=c0. The x-component uxðx; yÞ of the particle velocity between
two plates of the stack, function of the acoustic pressure gradient, is
given by [1],

uxðx; yÞ ¼
i

q0x
y0

y0 þ es

� ��1
@pðxÞ
@x
� 1� cosh½ð1þ iÞy=dv �

cosh½ð1þ iÞy0=dv �

� �
; ð4Þ

where the ratio y0=ðy0 þ esÞ is the porosity of the stack. The impor-
tant physical phenomena involved in the process inside the stack
considered here can be described as the combined effects of heat
fluxes. It is namely the superposition of four kinds of heat transfer
phenomena: the hydrodynamic heat flux due to thermoacoustic ef-
fect, the heat leakages through the lateral duct wall, the heat gener-
ated by viscous losses inside the stack and the conductive heat flux
returning in the solid walls of the stack and along the fluid inside
the stack. These heat transfer phenomena are expressed below,
assuming the usual approximations in linear thermoacoustic theory
[30,31] (quasi-plane wave approximation, short stack approxima-
tion, working gas assumed to be an ideal gas, no temperature
dependance of the thermo-physical properties of the fluid and the
plates, large heat capacity per unit area of the plates, time-averaged
temperature of the plates at any coordinate x inside the stack equal
to the time-averaged temperature of the gas Tm at the same
coordinate):

(i) the hydrodynamic heat flux (time average over an acoustic
period) due to the thermoacoustic effect [1], creating a tem-
perature gradient along the stack, given per unit area by

Qthðx; tÞ ¼ qðxÞ � rðxÞ @hðx; tÞ
@x

; ð5Þ

where hðx; tÞ ¼ Tm � T1 is the temperature difference between the
mean temperature Tm inside the stack and T1 the ambient temper-
ature outside the resonator, with

qðxÞ ¼ �dh

2y0

p2
0

q0c0
1þ es

y0

� �
cos kðxþ x0Þ sin kðxþ x0Þ

�
1þ

ffiffiffiffi
r
p
� dm=y0

� �
aTm

ð1þ rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dm=y0 þ d2

m=ð2y2
0Þ

q ð6Þ

assuming that ðaTm ffi 1Þ does not depend significantly on the time
in the expression qðxÞ, and with

rðxÞ ¼ dh

2y0

p2
0

q0c0
1þ es

y0

� �2 CP

c0x
1� r

ffiffiffiffi
r
p

1� r2 sin2kðxþ x0Þ; ð7Þ

rðxÞ being the so-called thermoacoustically induced thermal
conductivity,

(ii) the heat leakages through the lateral duct wall, per unit area
and per unit time, given by [30,31],

QL ¼ �hLhðxÞ; ð8Þ

where hL denotes an empirical ‘‘heat exchange coefficient”
ðW m�2 K�1Þ,

(iii) the heat generated by viscous losses inside the stack, per
unit volume, defined as
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Qv ¼
1
y0

Z y0

0

1
T

Z T

0
l @vxðx; y; tÞ

@y

� �2

dt dy; ð9Þ

vx being the real part of ux, which gives straightforwardly after a
lengthy calculation, invoking solution (4) for the particle velocity,

Qv ¼
l

4y0dm

p2
0

q2
0c2

0

1þ es

y0

� �2 sinhð2y0=dmÞ� sinð2y0=dmÞ
jcosh½ð1þ iÞy0=dm�j2

sin2 kðxþ x0Þ;

ð10Þ

(iv) the conductive heat flux returning in the solid walls of the
stack and along the fluid inside the stack, per unit area,
Q c ¼ �Keq
@h
@x
; ð11Þ

where

Keq ¼
ð2y0K þ 2esKsÞ

2ðy0 þ esÞ
ð12Þ

is the effective thermal conductivity in the stack region. Then, con-
sidering an element of the stack of length dx, the energy balance is
governed by the following heat diffusion equation, in the interval
x 2 ð0; ‘Þ:

2ðy0q0Cp þ esqsCsÞ
@h
@t
¼ 2ðy0 þ esÞ �

@Qth

@x
� @Q c

@x
þ Qv þ SLQ L

� �
;

ð13Þ

where SL ¼ S=V with S the section area of the stack and V the vol-
ume of the stack. In the analytical model developed by [9], it can
be noted that the factors Qv and QL are not introduced by the
authors for interpreting the transient behaviour of the temperature,
therefore the characteristic time for stabilisation of the temperature
cannot be interpreted.

Invoking Eqs. (5)–(11) in Eq. (13) gives

@h
@t
¼ 2ðy0 þ esÞ

2ðy0q0Cp þ esqsCsÞ

� ðKeq þ rðxÞÞ @
2h
@x2 þ

@rðxÞ
@x

@h
@x
� SLhLhþ Qv �

@qðxÞ
@x

� �" #
:

ð14Þ
Introducing the function

gðxÞ ¼ 2ðy0 þ esÞ
2ðy0q0Cp þ esqsCs

ÞðKeq þ rðxÞÞ; ð15Þ

and the following notations

fL ¼
2ðy0 þ esÞ

2ðy0q0Cp þ esqsCsÞ
SLhL; ð16Þ

qv ¼
2ðy0 þ esÞ

2ðy0q0Cp þ esqsCsÞ
Qv �

@qðxÞ
@x

� �
; ð17Þ

allows Eq. (14) to be re-written as follows:

@h
@t
¼ @

@x
gðxÞ @h

@x

� �
� fLhþ qv : ð18Þ

Considering the new variable

n ¼
Z x

0

gð0Þ
gðuÞdu ð19Þ

gives

@

@x
gðxÞ @h

@x

� �
¼ g2ð0Þ

gðxÞ
@2h

@n2 ; ð20Þ
and then, assuming that gðxÞ does not depend significantly on the
spatial variation (gðxÞ � gð0Þ, short stack approximation,
‘ << 2pc0=x),

@

@x
gðxÞ @h

@x

� �
¼ g

@2h
@x2 : ð21Þ

Finally Eq. (18) becomes, for x 2 ð0; ‘Þ,

@h
@t
¼ g

@2h
@x2 � fLhþ qv : ð22Þ

In the right hand side of Eq. (22), it can be noted that the first
term represents the effect of the conductive heat flux returning in-
side the stack enhanced by the acoustically induced thermal con-
ductivity (see expression (15) of gðxÞ), whereas the second term
accounts for the heat leakages through the lateral duct wall and
the third term for the heat generated by viscous losses inside the
stack enhanced by the non-uniformity of the thermoacoustic pro-
cess along the stack.

At each boundary of the stack, x ¼ 0 and x ¼ ‘, the conductive
heat flux which crosses from the inside to the outside of the stack
per unit area and per unit time is balanced by both the heat trans-
fer towards the heat exchangers through the end of the stack (with
a heat-transfer coefficient he0;‘ ), and the heat flux reaching the end
of the stack, which is the combination of the thermoacoustic heat
flux Q th given by Eq. (5) and a heat flux Qvort which represents a
possible additional heating due to non-linear phenomena at the
ends of the stack associated with high levels of velocity (vorticity
and minor losses at the ends of the stack [32], for example)

Keq
@h
@x
� he0 h ¼ Qthð0Þ � Qvortð0Þ; x ¼ 0; t > 0; ð23aÞ

Keq
@h
@x
þ he‘h ¼ Q thð‘Þ þ Qvortð‘Þ; x ¼ ‘; t > 0; ð23bÞ

where he0;‘ denotes an empirical heat exchange coefficient and
where Qvort is an empirical phenomenological coefficient. Finally,
the homogeneous boundary-value problem for the stack is gov-
erned by Eq. (22) in the interval x 2 ð0; ‘Þ , by the boundary condi-
tions at x ¼ 0 and x ¼ ‘ given by Eqs. (23a) and (23b) and by the
initial condition, leading to the following one-dimensional set of
fundamental equations of heat conduction for the transient temper-
ature distribution inside the stack:

1
g
@h
@t
¼ @

2h
@x2 � ahþ b; x 2 ð0; ‘Þ; t > 0; ð24aÞ

@h
@x
� g0h ¼ q0; x ¼ 0; t > 0; ð24bÞ

@h
@x
þ g‘h ¼ q‘; x ¼ ‘; t > 0; ð24cÞ

hðx;0Þ ¼ uðxÞ; x 2 ð0; ‘Þ; t ¼ 0; ð24dÞ

where a ¼ fL=g;b ¼ qv=g; g0;‘ ¼ he0;‘ =½Keq þ r�; q0 ¼ ½qð0Þ � Qvortð0Þ�=
½Keq þ r�; q‘ ¼ ½qð‘Þ þ Qvortð‘Þ�½qð‘Þ þ Qvortð‘Þ�½Keq þ r�; qð0Þ and qð‘Þ
being given by Eq. (6), qv being considered uniform along the stack
(short stack approximation) and the function uðxÞ accounting for
the initial temperature spatial distribution.

Solution of this problem for the transient temperature distribu-
tion along the x-axis inside the stack as a function of the time,
assuming short stack approximation (g; a and b assumed to be
constant), when the acoustic energy is provided to the thermoa-
coustic resonator from time t ¼ 0, is achieved with the aid of an
expansion which involves the normal mode functions of the asso-
ciated eigenvalue problem. The details of the derivation are given
in the next section.
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3. The modal solution for the temperature profile

The relevant boundary eigenvalue problem for an ordinary dif-
ferential equation, which is associated to the problem as posed
above and which can be easily solved providing a set of orthogonal
eigenfunctions (here Fourier series), takes the form of the system
of equations

@2

@x2 þ k2
m

 !
wmðxÞ ¼ 0; x 2 ð0; ‘Þ; ð25aÞ

@

@x
� g0

� �
wmðxÞ ¼ 0; x ¼ 0; ð25bÞ

@

@x
þ g‘

� �
wmðxÞ ¼ 0; x ¼ ‘: ð25cÞ

The solution which obeys this system of equations is found to have
the explicit form [30]

wmðxÞ ¼ N�1
m ½kmcosðkmxÞ þ g0sinðkmxÞ�; ð26aÞ

with

N2
m ¼

1
2

k2
m þ g2

0

	 

‘þ g‘

k2
m þ g2

‘

 !
þ g0

" #
; ð26bÞ

so that the eigenfunctions wm are normalized, i.e.Z ‘

0
wm1

wm2
dx ¼ dm1m2 : ð26cÞ

The eigenvalues km are solutions of the equation

tanðkm‘Þ ¼
kmðg0 þ g‘Þ
k2

m � g0g‘
: ð26dÞ

To determine the temperature profile, one introduces the
expansion

h ¼
X1
m¼0

CmðtÞwmðxÞ; ð27Þ

where the individual coefficient functions CmðtÞ are given by

CmðtÞ ¼
Z ‘

0
wmðxÞhðx; tÞdx; ð28aÞ

denotes below

CmðtÞ ¼ hwmjhi: ð28bÞ

These coefficient functions < wmjh > are subsequently found
from multiplying the diffusion Eq. (24a) by the eigenfunction wm

and integrating over the interval ð0; ‘Þ. It follows

1
g
@

@t
hwmjhi ¼ wm

@2

@x2

����� h

* +
� ahwmjhi þ hwmjbi; ð29aÞ

and, with the aid of the Green theorem,

1
g
@

@t
þ a

� �
wmjhh i ¼ @2

@x2 wm

�����h
* +

þ wm
@

@x
h� h

@

@x
wm

� �‘
0
þ hwmjbi:

ð29bÞ

Then, invoking Eq. (25a), the coefficients CmðtÞ are solution of

@

@t
þ gðk2

m þ aÞ
� �

CmðtÞ ¼ fmðtÞ; ð30aÞ

where

fmðtÞ ¼ g q‘wmð‘Þ � q0wmð0Þ þ hwmjbi½ �: ð30bÞ
Accounting for the initial condition (24d), the solution of Eq. (30a) is
given by

CmðtÞ ¼ e�g k2
mþað Þt hwmjuðxÞi þ

Z t

0
eg k2

mþað Þt0 fmðt0Þdt0

� 

: ð31Þ

Finally, assuming that the function fmðt0Þ does not depends sig-
nificantly on time, and that the initial condition uðxÞ is here equal
to zero, the solution is thus explicitly given by

h ¼ �
X

m

ðq‘wmð‘Þ � q0wmð0Þ þ hwmjbiÞ
e�g k2

mþað Þt � 1

k2
m þ a

	 

2
4

3
5wmðxÞ;

ð32aÞ

with, in the frame of the ‘‘short stack” approximation (b does not
depend on the coordinate x),

hwmjbi ¼ N�1
m b sinðkm‘Þ þ

g0

km
ð1� cosðkm‘ÞÞ

� �
: ð32bÞ

Further simplifications, assuming namely that the heat leakages
through the lateral duct wall and towards resonator are neglected,
and that the heat generated by viscous losses inside the stack is not
taken into account, lead directly to the results discussed by previ-
ous authors [9]. According to these simplifications, if one allows
the parameters g0; g‘; fL and b to shrink to zero, the solution
(32a) takes the form [5]

h ¼ ðq‘ þ q0Þ
ffiffiffi
2
‘

r X
m odd

1� e�gk2
mt

h i 1

k2
m

ffiffiffi
2
‘

r
cos kmx; km ¼

mp
‘
;

ð33aÞ

where the first summation represents a linear contribution to the
temperature distribution inside the stack, namely,

X
m odd

‘

mp

� �2
ffiffiffi
2
‘

r
cos

mp
‘

x
	 


¼ �1
2

ffiffiffi
‘

2

r
x� ‘

2

� �
: ð33bÞ

It must be noticed that this theoretical temperature distribution
does not fit correctly with the experimental results. The discussion
presented in the next section lies on result (32) and does not as-
sume these last approximations.

Remark: In the formulation presented above (set of Eqs. (24a)–
(24d)) it is assumed that the heat transfers towards each part of
the resonator through the ends x ¼ 0 and x ¼ ‘ of the stack depend
only on the temperature difference h (involving empirical heat ex-
change coefficients in Eqs. (24b) and (24c)). Another approach
(Appendix A) can be built on a classical model for these heat trans-
fers which includes both the diffusion process inside each part of
the thermoacoustic resonator and the heat flux between each ends
of the stack and heat exchangers (set at x ¼ 0 and x ¼ ‘, respec-
tively). A suitable analytical solution for the temperature
difference h can be obtained in the Fourier domain and the solution
in the time domain can then be expressed using Cauchy’s theorem
in the complex plane. However, it is necessary to assume appropri-
ate approximations to give analytical expressions. Namely, the
heat leakages through the ends of the stack have to be neglected.
In other words, the solution can be formally analytic, although its
actual implementation involves unavoidable numerical calculations.
4. Analytical and experimental results

4.1. Experimental setup and results

A view of the thermoacoustic refrigerator used for experiments
is shown in Fig. 2. This device consists of a half-wavelength resona-
tor with a constant square cross section (length Lþ x0 ¼ 86 cm;



Fig. 2. Experimental setup.

Table 1
Fitted values of empirical parameters for three stack positions.

Stack centre
position xc (cm)

he0 ðW m�2 K�1Þ he‘ ðW m�2 K�1Þ Qvort ðW m2Þ

72 30 30 0
62 72 42 56
43 75 80 272
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section S ¼ 80� 80 mm2), closed by a rigid wall at one end and
coupled to an electrodynamic loudspeaker (Focal 4V3211) at the
other end. This resonator is filled with air at atmospheric pressure
and at ambient temperature.

The thermoacoustic core is not a stack of parallel plates, but a
ceramic porous material made of cordierite which is usually used
in catalytic exhaust pipe. This ceramic, called stack in the follow-
ing, contains a multitude of square cross section channels (600
CPSI, length ‘ ¼ 60 mm, transversal width 2y0 ¼ 0:92 mm, wall
thickness 2es ¼ 0:12 mm) parallel to the resonator axis. This stack
can be set at any position in the resonator. Note that this proto-
type does not comprise any heat exchanger. The thermo-physical
and geometrical characteristics of the prototype are summarised
in Table 1. Temperature measurements are carried out along the
stack by the use of thirteen type K thermocouples (127 lm in
diameter) equally spaced along the median axis of the stack
(each 5 mm). An additional type K thermocouple is set on the
external wall of the resonator in order to monitor the ambient
temperature during the measurements. The acoustic pressure is
measured by a microphone flush-mounted on the wall at the en-
trance of the resonator (near the membrane of the loudspeaker).
During experiments, the working frequency is tuned at the first
resonance of the device, that is f � 200 Hz, and the amplitude
of the acoustic pressure at the entrance of the resonator is set
at p0 ¼ 1500 Pa.

The time evolution of the temperature along the stack axis is
measured during the transient process for three different positions
of the stack in the resonator (defined by the abscissa xc of the stack
centre) as shown in Fig. 3. This evolution is shown in Fig. 4 for a
position of the stack which leads to an experimentally maximal
Fig. 3. Schematic view of the cylindrical thermoacoustic refrigerator and the three
different positions of the stack in the resonator.
temperature difference DT between the ends of the stack. This
optimal position depends on the frequency, on the shape and the
dimensions of the stack, on the thermo-physical properties of the
fluid and the plates, and on the acoustic pressure level in the res-
onator [33]. For this device, the optimal position of the stack centre
is either xc ¼ 18:5 cm or xc ¼ 72 cm (symmetrical positions about
the half length of the resonator). The results given on Fig. 4 are ob-
tained at the position xc ¼ 72 cm. Before switching on the loud-
speaker, the system is at thermal equilibrium, the temperature
distribution along the stack being uniform (Tm ¼ 28 �C, Fig. 4(c),
curve denoted t1) and the temperature difference DT between
the ends of the stack being then equal to zero. During the first sec-
onds after switching on the loudspeaker, the temperature at the
end of the stack closest to the loudspeaker decreases, while the
temperature at the opposite end increases (Fig. 4(a)). The temper-
ature profile along the stack is then symmetrically bending at the
stack ends, while it remains constant at the middle of the stack
(Fig. 4(c), curve denoted t2). After a while, the temperature gradi-
ent along the stack becomes almost uniform (Fig. 4(c), curve de-
noted t3). Then, about 500 s after switching on the loudspeaker,
the steady state temperature difference DT between the ends of
the stack is reached ( DT ¼ 12 �C, Fig. 4(b)). Nevertheless, the tem-
perature profile is not symmetrical about the uniform temperature
distribution at rest: each thermocouple along the stack undergoes
a small thermal drift towards higher temperature (around 1 �C
about 900 s after switching on the loudspeaker as shown in
Fig. 4(c), curve denoted t4).

Fig. 5 shows the evolution of the temperature along the stack
axis for a stack centre set at the mid-length of the resonator
ðxc ¼ 43 cmÞ. For this position, each thermocouple along the stack
undergoes almost the same heating (no cooling is observed), and
the temperature difference DT obtained between the two ends of
the stack is very small (about 1.2�C, Fig. 5(b)). About 10 min after
switching on the loudspeaker, the thermal drift experienced by
each thermocouple along the stack is around 3.5 �C (Fig. 5(c), curve
denoted t4).

Fig. 6 shows the evolution of the temperature along the stack
axis for a stack centre set in the resonator at a distance
xc ¼ 62 cm from the loudspeaker. This intermediate position be-
tween the optimal position and the mid-length of the resonator
approximately corresponds to the median position between a pres-
sure node and a pressure antinode in the resonator. The tempera-
ture difference DT between the two ends of the stack reaches its
steady state value ( DT � 8 �C, Fig. 6(b)) about 400 s after switching
on the loudspeaker. Each thermocouple along the stack undergoes
the same thermal drift towards higher temperature. This drift is
more important than the drift experienced at optimal position
(around 2.7 �C about 900 s after switching on the loudspeaker).
After a while, the temperature of the cold end of the stack comes
back to its rest value.



Fig. 4. Experimental time evolution of the mean temperature for a position of the stack centre xc ¼ 72 cm. (a) Time evolution of the mean temperature of thirteen points
regularly distributed along the axis of the stack. (b) Time evolution of temperature difference between the two ends of the stack. (c) Time evolution of the mean temperature
distribution along the axis of the stack: t1 is the time when switching on the loudspeaker ð�Þ; t2 is 60 s after switching on the loudspeaker ðMÞ; t3 is 240 s after switching on the
loudspeaker ð�Þ, and t4 is 900 s after switching on the loudspeaker ðrÞ.
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Fig. 5. Experimental time evolution of the mean temperature for a position of the stack centre in the resonator xc ¼ 43 cm. (a) Time evolution of the mean temperature of
thirteen points regularly distributed along the axis of the stack. (b) Time evolution of temperature difference between the two ends of the stack. (c) Time evolution of the
mean temperature distribution along the axis of the stack: t1 is the time when switching on the loudspeaker ð�Þ; t2 is 60 s after switching on the loudspeaker ðMÞ; t3 is 240 s
after switching on the loudspeaker ð�Þ, and t4 is 600 s after switching on the loudspeaker ðrÞ.
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4.2. Analytical results

The different behaviours observed on the experimental results
can be obtained by the use of the analytical modelling presented
in Sections 2 and 3. Analytical results and experimental data are re-
ported on Figs. 7–9 for the three different positions of the stack in the
resonator. Figs. 7(a), 8(a) and 9(a) give the theoretical (full lines) and
experimental (doted lines) time evolutions of the temperatures of
two points located inside the stack at 10 mm far from each end,
respectively, avoiding then edge effects. Figs. 7(b), 8(b) and 9(b) give
the theoretical (full lines) and experimental (doted lines) time evo-
lutions of the temperature difference between these two points.
Figs. 7(c), 8(c) and 9(c) give the theoretical (full lines) and experi-
mental (doted lines) time evolutions of the temperature distribution
along the stack. The concordance between experimental and analyt-
ical temperature time evolutions is obtained by fitting the values of
several empirical parameters: hL, he0;‘ and Qvort (see Table 1). First,
the value of heat exchange coefficient hL is here chosen to be very
low (<1) because the stack is laterally well thermally isolated. Sec-
ond, the heat exchange coefficients he0 and he‘ are considered as
empirical in an interval compatible with the approximate results
given in the literature (see below). Third, the heat flux Qvort due to
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Fig. 6. Experimental time evolution of the mean temperature for a position of the stack centre in the resonator xc ¼ 62 cm. (a) Time evolution of the mean temperature of
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Fig. 7. Theoretical (full lines) and experimental (dotted lines) time evolution of the mean temperature for a position of the stack centre in the resonator xc ¼ 72 cm. (a) Time
evolution of the mean temperature of two points located inside the stack at 10 mm far from each end, respectively. (b) Time evolution of temperature difference between
these two points. (c) Time evolution of the mean temperature distribution along the axis of the stack: t1 is the time when switching on the loudspeaker ð�Þ; t2 is 60 s after
switching on the loudspeaker ðMÞ; t3 is 240 s after switching on the loudspeaker ð�Þ, and t4 is 900 s after switching on the loudspeaker ðrÞ.
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vorticity at the ends of the stack is considered as a phenomenological
parameter, the theoretical evaluation of Qvort having yet to be
worked out. The identification of both heat exchange coefficients
and vorticity heat flux is achieved simultaneously with the Leven-
berg–Marquard method, using the ‘‘lsqnonlin” Matlab routine. Note
that the value of the heat Qv generated by viscous losses inside the
stack is assumed here to be equal to twice the value given by the
Eq. (10), taking then into account the fact that the stack used in
experimental setup is a set of parallel square ducts.

When the stack centre is set at its optimal position in the resona-
tor (xc ¼ 72 cm), the concordance between experimental and ana-
lytical results is achieved with he0 ¼ 30 W m�2 K�1, he‘ ¼ 30
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W m�2 K�1 and Qvort ¼ 0. When the stack centre is set at the inter-
mediate position between the optimal position and the mid-length
of the resonator ðxc ¼ 62 cmÞ, the concordance between experimen-
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Fig. 9. Theoretical (full lines) and experimental (dotted lines) time evolution of the mean
evolution of the mean temperature of two points located inside the stack at 10 mm far
these two points. (c) Time evolution of the mean temperature distribution along the axi
switching on the loudspeaker ðMÞ; t3 is 240 s after switching on the loudspeaker ð�Þ, an
tal and analytical results is achieved with he0 ¼ 72 W m�2 K�1;

he‘ ¼ 42 W m�2 K�1 and Qvort ¼ 56 W m�2. When the stack centre
is set at the mid-length of the resonator ðxc ¼ 43 cmÞ, the concor-
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dance between experimental and analytical results is achieved with
he0 ¼ 75 W m�2 K�1; he‘ ¼ 80 W m�2 K�1 and Qvort ¼ 272 W m�2.

The fitted values of heat exchange coefficients he0;‘ and the fitted
value of heat due to vorticity Qvort depend on the position of the
stack in the resonator: they are increasing when the stack is moved
toward the resonator centre. This behaviour is not surprising since
the amplitude of the particle velocity is increasing in the same
way. The fitted values of heat exchange coefficients he0;‘ have the
expected order of magnitude of heat exchange coefficients re-
ported in the literature for such geometry in oscillating flows
[34,35]. Actually, the adjustment of these empirical parameters
prevents us to derive results with sufficiently accurate precision
to obtain very fine quantitative conclusions. Forthcoming works
have yet to be conducted in order to derive theoretical estimations
of these parameters. Nevertheless, the reasonable good quantita-
tive agreement between analytical and experimental results allows
the interpretation of the transient behaviour as follows. The dis-
cussion is limited here to the case of the intermediate position be-
tween the optimal position and the mid-length of the resonator
(Fig. 8), because it offers the advantage of clearly showing the ef-
fects of the different phenomena taken into account in the theoret-
ical model. At the beginning of the process, during the first seconds
following the start of the loudspeaker, the temperature at the end
of the stack closest to the loudspeaker decreases whilst the tem-
perature at the opposite end increases (Fig. 8(a)): that is the effect
of the thermoacoustic heat flux Q th reaching the ends of the stack.
After few hundreds of seconds, the temperature difference be-
tween the ends of the stack tends toward a limit (Fig. 8(b)), the
thermoacoustic heat flux being balanced by the conductive heat
flux Q c returning in the stack region, enhanced by the effect of
the thermoacoustically induced thermal conductivity r. The effect
of both the heat Qv generated by viscous losses inside the stack
and the heat Qvort generated at the ends of the stack leads to a glo-
bal heating of the stack. This effect coexists with the thermoacou-
stic effect, but predominates once thermoacoustic effect is
balanced with heat conduction. Then, the temperature of each
point of the stack increases (the temperature of the ‘‘cold end”
reaching again its initial value), and finally tends towards a limit
value (Fig. 8(a)) due to heat transfer through the ends of the stack.
Fig. 10. Schematic view of the cylindrical thermoacoustic refrigerator with heat
exchangers.
5. Conclusion

In conclusion, this paper provides the first complete yet simple
model to describe the transient behaviour of the temperature pro-
file in the stack of classical thermoacoustic refrigerators. The
experimental results have provided confirmation of the theoretical
prediction showing more particularly the specific shape of the
curves (especially the shape at the beginning of the transient)
and thus the characteristic times of the transient, emphasising that
each effect which occurs plays an important role in the transient
profile of the temperature inside the stack. Moreover, the agree-
ment between the experimental and theoretical values of the sta-
tionary temperature difference between the ends of the stack
shows that the model presented in this paper conveys an interpre-
tation of the physical phenomena, namely the role played by the
thermoacoustic heat flux carried along the stack, the conductive
heat flux returning in the solid walls of the stack and through
the fluid inside the stack, the transverse heat conduction in the
stack and heat leakages through the duct walls, heat generated
by viscous losses in the stack and minor losses at the ends of the
stack, and heat transfer through both ends of the stack.

The results presented in this paper convey our conviction that
the analytical model would provide accurate description of the
transient of classical thermoacoustic devices. It is worth noting
that the sensitivity of the theoretical results to the value of the
parameters is quite important (the fitted values of the parameters
are always obtained with a precision which reach roughly 1%), but
because these parameters are unknown (only their orders of mag-
nitude can be obtained from data available in the literature), this
prevents us from validating quantitatively the theory. Presumably,
the theoretical method presented in this paper will be adequate to
access the precise value of such parameters in non-stationary re-
gime with a good precision. These kind of measurements, lying
on this method, and their validations have yet to be worked out.
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Appendix A. Basic equations and solutions for the temperature
difference between the ends of the stack (Fourier transform)

In the formulation presented in Section 2 (set of Eqs. (24a)–
(24d)) it is assumed that the heat transfers towards the heat
exchangers through the ends x ¼ 0 and x ¼ ‘ of the stack depend
only on the temperature difference h (involving empirical heat ex-
change coefficients, Eqs. (24b) and (24c)). The approach shortly de-
scribed in the remark at the end of Section 3 is built on a classical
model for these heat transfers when heat exchangers are consid-
ered as heat sinks. This model includes both the diffusion process
inside the parts i = 1 and 3 of the thermoacoustic resonator
(Fig. 10), and the heat flux between each ends of the stack and heat
exchangers (set at x ¼ 0 and x ¼ ‘, respectively). Then, Eqs. (24b)
and (24c) are replaced by the set of four equations

�Keq
@hð0Þ
@x
þK1

@h1ð0Þ
@x

� qð0Þþ rð0Þ@hð0Þ
@x

� �
¼ C0

@h0

@t
; x¼ 0; t> 0;

ð34Þ

Keq
@hð‘Þ
@x
� K3

@h1ð‘Þ
@x

þ qð‘Þ þ rð‘Þ @hð‘Þ
@x

� �
¼ C‘

@h‘
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ð35Þ

@h1

@t
¼ g1

@2h1

@x2 � f1h1; x 6 0; t > 0; ð36Þ

@h3

@t
¼ g3

@2h3

@x2 � f3h3; x P ‘; t > 0; ð37Þ

where h; h1; h3; h0 and h‘ denote the temperature difference
ðTm � T1Þ between the mean temperature Tm inside the thermoa-
coustic resonator and T1 the ambient temperature outside the res-
onator, respectively, in the stack, in the parts of the reonator
denoted 1 and 3 and in the heat exchangers located, respectively,
at x ¼ 0 and x ¼ ‘, where C0 and C‘ are the heat capacity of the heat
exchangers, and K1 and K3 are the diffusive thermal conductivity of
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the fluid in the resonator (the other notations being given in the
text), with the interface conditions

hð0Þ ¼ h1ð0Þ ¼ hc ð38Þ

and

hð‘Þ ¼ h3ð‘Þ ¼ hh ð39Þ

while Eqs. (24a) and (24d) remain valid:

@h
@t
¼ g

@2h
@x2 � fLhþ qv ; x 2 ð0; ‘Þ; t > 0; ð40Þ

hðx;0Þ ¼ 0; x 2 ð0; ‘Þ; t ¼ 0: ð41Þ

The suitable analytical solution for the temperature difference h
inside the stack can be expressed in the Fourier domain, and then
in the time domain using Cauchy’s theorem. However, it would be
necessary to assume appropriate approximations to give tractable
analytical expressions, namely the heat leakages through the ends
of the stack have to be neglected (which is a limit of the method).

Appendix B. Parameters and their values used in the numerical
calculations and in the experimental device

Notation Definition Unity Numerical

value
Geometrical parameters (resonator and stack)

Lþ x0
 Resonator length
 m
 86� 10�2
S
 Resonator section area
 m2
 0:8� 0:8

‘
 Stack length
 m
 6� 10�2
2es
 Stack-plate thickness
 m
 0:12� 10�3
2y0
 Fluid layer thickness
 m
 0:92� 10�3
Thermo-physical parameters of the stack plates
�1
Cs
 Specific heat coefficient per unit of

mass

J kg K�1
 1000
Ks
 Thermal conductivity
 W m�1 K�1
 0:19

qS
 Density
 kg m�3
 1:4� 103
Thermo-physical properties of the working gas

q0
 Density
 kg m�3
 1:2

c0
 Adiabatic speed of sound
 m s�1
 344

K
 Thermal conductivity
 W m�1 K�1
 2:55� 10�2
Cp
 Specific heat coefficient per unit of
mass
J kg�1 K�1
 1004
l
 Shear viscosity coefficient
 kg m�1 s�1
 1:82� 10�5
P0
 Atmospheric pressure
 Pa
 1:013� 105
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